US009052793B2

a2 United States Patent

Torngren

US 9,052,793 B2
Jun. 9, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

LIGHTWEIGHT OBSERVABLE VALUES FOR
MULTIPLE GRIDS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventor: Peer M. Torngren, Sollentuna (SE)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 351 days.

Notice:

Appl. No.: 13/719,622

Filed: Dec. 19, 2012

Prior Publication Data

US 2014/0173219 Al Jun. 19, 2014

Int. Cl1.
GO6F 12/00
GO6F 13/00
GO6F 13/28
GO6F 9/44
GO6F 3/048
GO6F 9/54
GO6F 17/30
U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2013.01)
(2006.01)
(2006.01)
................ GO6F 3/048 (2013.01); GOGF 9/542
(2013.01); Y10S 707/99944 (2013.01); GOGF
974425 (2013.01); GOGF 17/30368 (2013.01)
Field of Classification Search
CPC . GOGF 17/30368; GOGF 9/4425; GOGF 9/542;
Y108 707/99944
USPC 711/141,717/116
See application file for complete search history.

START

(56) References Cited
U.S. PATENT DOCUMENTS
8,276,119 B2* 9/2012 El-Kershcccocevenn 717/116
2002/0111992 Al 8/2002 Copeland et al.
2003/0204517 Al* 10/2003 Skinner etal. 707/100
2005/0027549 Al* 2/2005 Chenetal.ccooevvvveneenn. 705/1
2005/0091637 Al 4/2005 Schechter et al.
2011/0214092 Al* 9/2011 Palmeretal. 715/863
2012/0167067 Al 6/2012 Low et al.
OTHER PUBLICATIONS

Kielmann et al., “Enabling Java for High-Performance Computing:
Exploiting Distributed Shared Memory and Remote Method Invoca-
tion” Communications of the ACM vol. 44 Issue 10, Oct. 2001, pp.
110-117 [online], [retrieved on Sep. S, 2012]. Retrieved from the
Internet <URL: http://www.few.vu.nl/~t kielmann/papers/cacm.
pdf>.

(Continued)

Primary Examiner — Ryan Bertram
(74) Attorney, Agent, or Firm — Edward P. Li

(57) ABSTRACT

A method, computer program product, and computer system
for updating observable values for multiple user-interface
components. A computer system reads first values indexed by
keys from a cache, in response to receiving a request from the
multiple user-interface components. The computer system
reads second values, which are indexed by the keys, from
persistent storage. The computer system compares the first
values and the second values based on the keys. The computer
system writes the second values as new values of the first
values in the cache. The computer system notifies one or more
observers for respective ones of the first values, wherein the
respective ones of the first values are changed. And, the com-
puter system notifies the one or more observers for the first
values that reading and writing operations are finished.

20 Claims, 4 Drawing Sheets

a0

READ VALUES FROM AN INTERNAL CACHE BASED ON KEYS

| INRESPONSE TO RECEIVING A REQUEST FROM UI COMPONENTS, Iv_ 301

| READ VALUES FROM PERSISTENT STORAGE BASED ON THE KEYS I—» 303
T

¥
COMPARE THE VALUES FROM THE PERSISTENT

STORAGE AND THE VALUES FROM THE INTERNAL CACHE |"’ 305

309

8
THE RESPECTIVE

/—311

WRITE A RESPECTIVE ONE

OF THE VALUES FROM THE

PERSISTENT STORAGE TO
THE INTERNAL CACHE

ONE OF VALUES IN THE
INTERNAL CACHE
CHANGED ?,

WRITE A RESPECTIVE ONE OF THE
VALUES FROM THE PERSISTENT
STORAGE AS A NEW VALUE OF THE
RESPECTIVE ONE OF THE VALUES
FROM THE INTERNAL CACHE

315~~~

I

NOTIFY ONE OR MORE

317~~~

NOTIFY ALL LISTENERS THAT
READING AND WRITING
OOPERATIONS HAVE FINISHED

INTERNAL CACHE THAT
A CHANGE IS MADE

US 9,052,793 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Telerik Inc., “ObservableObject in Kendo Ul MVVM framework |
Kendo UI Documentation” Copyright 2011-2012 [online], [retrieved
on Sep. 5, 2012]. Retrieved from the Internet <URL: http://www.
kendoui.com/documentation/framework/mvvm/observableobject.
aspx>.

Wikipedia, “Flyweight pattern—Wikipedia, the free encyclopedia”,
Published on: Mar. 16, 2012, Wikipedia, the free encyclopedia

[online], [retrieved on Oct. 10, 2012]. Retrieved from the Internet
<URL: http://en.wikipedia.org/w/index.php?title=Flyweight__pat-
tern&oldid=482203222>.

Wikipedia, “Observer pattern—Wikipedia, the free encyclopedia”,
Published on: Apr. 11, 2012, Wikipedia, the free encyclopedia
[online], [retrieved on Oct. 10, 2012]. Retrieved from the Internet
<URL: http://en.wikipedia.org/w/index.php?title=Observer__pat-
tern&oldid=486825251>.

* cited by examiner

US 9,052,793 B2

Sheet 1 of 4

Jun. 9, 2015

U.S. Patent

l '©Id
J0VAAIN J18VANSSH0
aNWA _=——1 Inhoiaminon [S
I18VAY3SEO
Ny
SININOJINOD
IN ITILTNW \v_ m%%,w%wn 'le———{ davaan |-
319VANISEO
ogL— NP
WYHOOd 31¥adN INTVA
Obl JOVH0LS |_—oz|
INALSISH3d

8?&\\

US 9,052,793 B2

Sheet 2 of 4

Jun. 9, 2015

U.S. Patent

(JouIMBUOp
()Buipeaysuop
Jaudjsialepdn

<<O0BLIdWUI>>

siz— *0

¢ Old

(Yabueynaniea

lauajsrianjep
<<80BUBJUI>>

tw|\ 0

(Joug)sitalepdn: Jousjsi|)iaus)siiarepdnoanows.
(18udsITerepPdn: Joudsi|)Jausjsiteiepdnppe
(100[00: Aoy)anjepdolp

(U1 :anjeA 108lqO : A8y)onjeAs|qeAlssqQles
aneAd|qenasqQ : (109q0 : AeY Janjeps|qeAlasqQ)eb
([1308[q0 : shey)peo|

ooo._uo : p|dnoJb)ies|o
(10ud)sIeneA :ausjsi| 198[q0 : pI

noib)isus)sippe
JUI : 8njeA wos_mZom
jul :(Janjepiab

Jajepdnajqealasqo
<<90BlBI>>

<<lIaug)siTanjeA>uonos|j0) 108lqo>dey :sisus)s]|

100[00 :Aayeyepdn
Ul :anjeA

‘‘N.l\

o:§\

anjeAd|qeAIasqO

QN.I\

U.S. Patent Jun. 9, 2015 Sheet 3 of 4 US 9,052,793 B2

(_START)

IN RESPONSE TO RECEIVING A REQUEST FROM Ul COMPONENTS, p~_ 301
READ VALUES FROM AN INTERNAL CACHE BASED ON KEYS

READ VALUES FROM PERSISTENT STORAGE BASED ON THE KEYS 303

COMPARE THE VALUES FROM THE PERSISTENT
STORAGE AND THE VALUES FROM THE INTERNAL CACHE ™ 305

311
307 [

WRITE A RESPECTIVE ONE

OF THE VALUES FROM THE

PERSISTENT STORAGE TO
THE INTERNAL CACHE

IS A
MATCHED KEY
FOUND IN THE INTERNAL
CACHE ?

309 ——~ CHECKARESPECTIVE ONE OF THE
VALUES FROM THE INTERNAL CACHE Y

313

THE RESPECTIVE
ONE OF VALUES IN THE
INTERNAL CACHE
CHANGED ?

NO

WRITE A RESPECTIVE ONE OF THE
315 -~ VALUES FROM THE PERSISTENT
STORAGE AS A NEW VALUE OF THE
RESPECTIVE ONE OF THE VALUES
FROM THE INTERNAL CACHE

+ NOTIFY ALL LISTENERS THAT
NOTIFY ONE OR MORE READING AND WRITING
317 ——~ LISTENERS OF THE OPERATIONS HAVE FINISHED
RESPECTIVE ONE OF
THE VALUES IN THE
INTERNAL CACHE THAT END
A CHANGE IS MADE

FIG. 3

US 9,052,793 B2

Sheet 4 of 4

Jun. 9, 2015

U.S. Patent

€EY —

LEY —

0EYr—

J0IA3A ¥31NdNOD

¥ Ol
ooy — (8)30IN3a
TYNY3LX3
0S¥ ~ S3IDVLYILNI O/l
oo¢)\H
Oby ~J (S)3DV44ILNI -
SROMLIN AJ|V Amvw_owmm_oomn_
00y ocv
o o
[T (S)NVHDO0¥d HILNdNOD - (SINVY
|_}—(S)INTLSAS ONILVHIJO - Aﬂl | ey
(S)301A3A A9VHOLS TT1dIONVYL oty (S)NOY
S 1y
AHOWIN
oLy _J

——00¥

US 9,052,793 B2

1
LIGHTWEIGHT OBSERVABLE VALUES FOR
MULTIPLE GRIDS

FIELD OF THE INVENTION

The present invention relates generally to updating observ-
able values for multiple user-interface components, and more
particularly to a lightweight mechanism of updating the
observable values.

BACKGROUND

There are a few ways to handle updating observable values
when multiple user-interface components (e.g. grids) show
the simple or native data. The first way is a flyweight pattern.
A flyweight is an object that minimizes memory use by shar-
ing as much data as possible with other similar objects; itis a
way to use objects in large numbers when a simple repeated
representation uses an unacceptable amount of memory.
Often some parts of the object state can be shared and it’s
common to put them in external data structures and pass them
to the flyweight objects temporarily when they are used. The
second way is an observer pattern. An object called the sub-
ject maintains a list of its dependents called observers. The
object notifies observers automatically of any state changes,
usually by calling one of their methods. The observer is a key
part in the MVC (Model-View-Controller) pattern. The third
way is an observable wrapper. The observable wrapper com-
bines the first and second ways. By wrapping a native object
in an observable container that exposes getters and setters
according to Java Beans standards, changes of the native type
may be observed. But, the third way is a rather expensive way.

SUMMARY

Embodiments of the present invention provide a method,
computer program product, and computer system for updat-
ing observable values for multiple user-interface compo-
nents. A computer system, in response to receiving a request
from the multiple user-interface components, reads first val-
ues from a cache, wherein the first values are indexed by keys.
The computer system reads second values from persistent
storage, wherein the second values are indexed by the keys.
The computer system compares the first values and the sec-
ond values based on the keys. The computer system writes to
the cache the second values as new values of the first values.
The computer system notifies one or more observers for
respective ones of the first values, wherein the respective ones
of the first values are changed. And, the computer system
notifies the one or more observers for the first values that
reading and writing operations are finished.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a diagram illustrating a system for updating
observable values for multiple user-interface components, in
accordance with an exemplary embodiment of the present
invention.

FIG. 2 is a class diagram of a value update program in the
system shown in FIG. 1, in accordance with an exemplary
embodiment of the present invention.

FIG. 3 is a flowchart illustrating operational steps of updat-
ing observable values for multiple user-interface compo-
nents, in accordance with an exemplary embodiment of the
present invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 is a diagram of components of a computer device
hosting a value update program shown in FIGS. 1 and 2, in
accordance with an exemplary embodiment of the present
invention.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java®,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer

US 9,052,793 B2

3

program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

Please note that in the drawings and descriptions below, the
term “Observer” in the general Observer pattern is replaced
by the term “Listener”. The Observer pattern is very common
in the Java community. However, the implementation of an
Observeris often called a Listener, and related methods to add
and remove observers follow the same naming conventions.
In the text below, the terms Observable and Listener refer to
exactly the same concept and can be used interchangeably.
The diagrams and descriptions use the term Listener, since
this reflects the Java naming conventions and the exemplary
embodiment.

FIG. 1 is a diagram illustrating updating observable values
system 100 for multiple user-interface components 130, in
accordance with an exemplary embodiment of the present
invention. Updating observable values system 100 includes
value update program 110, persistent storage 120, and mul-
tiple user-interface (UI) components 130. For example, mul-
tiple Ul components 130 are multiple grid cells. Value update
program 110 includes observable updater 111, lightweight
observable values 113, updater interface 115, and observable
value interface 117. Observable updater 111 manages
updates of lightweight observable values 113 and maintains a
cache of lightweight observable values 113. Each of light-
weight observable values 113 wraps a native value (e.g. an
int). When the native value of a specific one of lightweight
observable values 113 is loaded from persistent storage 120
or is updated based on a value from persistent storage 120,
observable updater 111 sets a new value for the specific one of
lightweight observable values 113. Value update program 110
gives interested parties (e.g. grids showing the cached values)
two options to listen to changes of the lightweight observable
values 113: first, listening to changes of individual values;
second, listening to the read/write events and fetching all
interesting values (e.g. the cached values shown in grids) in
one call when observable updater 111 has made value
changes.

In the first option, the changes of the individual values are
respectively notified to multiple Ul components 130. If a
native value of a specific one of lightweight observable values
113 is updated, all listeners of the specific one of lightweight
observable values 113 are notified. Specific one or more of
multiple user-interface components 130 show the native

25

35

40

45

4

value; thus, the specific one or more of multiple user-interface
components 130 are notified by lightweight observable val-
ues 113 through observable values interface 117 thereof. In
the second option, notification of changes of massive native
values is handled in one go rather than one by one native
value. The notification of the changes of massive native val-
ues is implemented by observable updater 111 through
updater interface 115 thereof. These two options enable lis-
teners to choose a best way to monitor the changes of the
native values: one call for one native value change or one call
for changes of many native values. The best way depends on
the runtime context, nature of data, and how frequently data
are changed.

FIG. 2 is a class diagram of value update program 110 in
updating observable values system 100 shown in FIG. 1, in
accordance with an exemplary embodiment of the present
invention. Value update program 110 includes classes:
ObservableUpdater 211, ObservableValue 213, UpdateLis-
tener 215, and ValueListener 217. In this exemplary embodi-
ment, ObservableUpdater 211 includes methods of observ-
able updater 111 shown in FIG. 1, ObservableValue 213
includes attributes and methods of a specific one of light-
weight observable values 113 shown in FIG. 1. FIG. 2 shows
that ObservableUpdater 211 and ObservableValue 213 have a
composition relationship and ObservableUpdater 211 asso-
ciates with multiple instances of ObservableValue 213. In this
exemplary embodiment, UpdateListener 215 includes meth-
ods of updater interface 115, and ValueListener 217 includes
a method of observable values interface 117. As shown in
FIG. 2, ObservableUpdater 211 calls multiple instances of
UpdateListener 215 and ObservableValue 213 calls multiple
instances of ValueListener 217.

Referring to FIG. 2, load() in ObservableUpdater 211
reads values from persistent storage 120 (e.g. a database)
shown in FIG. 1. The values are indexed by keys. In Observ-
ableUpdater 211, getObservableValue() is, according to Java
Bean standard, a standard getter that reads a value from an
internal cache of ObservableUpdater 211 and returns Observ-
ableValue 213. In ObservableUpdater 211, setObservabl-
eValue()is, according to Java Bean standard, a standard setter
that writes a value to an internal cache of ObservableUpdater
211. In ObservableUpdater 211, addUpdatelistener()
enables registered listeners to listen to the read/write events
and fetch all interesting values (e.g. the cached values shown
in grids) in one call. When new or updated values have been
read into the internal cache, ObservableUpdater 211 calls
doneReading() in UpdateListener 215. This is a way how
ObservableUpdater 211 broadcasts reading events to regis-
tered listeners. When new or updated values have been writ-
ten to persistent storage, ObservableUpdater 211 calls done-
Writing() in UpdateListener 215. This is a way how
ObservableUpdater 211 broadcasts writing events to regis-
tered listeners. In ObservableUpdater 211, removeUpdat-
eListener() removes a registered listener when the listener
itself requests to be removed. When the last listener for the
value is removed, the value can be removed from the internal
cache. The removal of the value from the cache can be done
explicitly by dropValue() in ObservableUpdater 211, or it can
be done implicitly by using a WeakHashMap in Observable-
Updater 211.

In the exemplary embodiment shown in FIG. 2, a list of
observers for each value is a simple and lightweight collec-
tion of listeners, thus implementing a very simple interface:
valueChange() in ValueListener 217. Whenever Observable-
Updater 211 writes a new value to the internal cache, Observ-
ableValue 213 makes a simple check to see if the native value
in the internal cache has changed. If the native value has

US 9,052,793 B2

5

changed, all registered listeners are notified that the native
value has changed, and can take relevant actions (typically to
update the presentation in a grid cell). Since the listener
knows what value it is listening to, it can just easily get the
current value for the observable value as easily as it is passed
as an argument (wrapped in a change event). This mechanism
is similar to the standard mechanism in java.beans.Property-
ChangeSupport, but since we know that we deal with very
simple values and observers, we can make the equality test
and notification mechanism much more efficient. Therefore,
there is no need for any PropertyChangeEvents, and there is
no need to extract and compare the native values from the
event.

To maximize performance where many listeners are regis-
tered for a value, the listeners are grouped by an identifier:
groupld in ObservableValue 213. The groupld is typically a
UI control; when the Ul control is disposed, all the listeners
registered by this control can be detached by a single method
call. The identifier groupld allows all the listeners in a group
to be removed in one go rather than one by one. In Observ-
ableValue 213, clear(groupld:Object) removes the listeners
grouped by the identifier of groupld.

ObservableValue 213 holds a key used to register a value in
the cache of ObservableUpdater 211. In ObservableValue
213, updaterKey keeps the reference in the cache alive as long
as the value has at least one registered listener.

In the exemplary embodiment shown in FIG. 2, get-
Value() in ObservableValue 213 is, according to Java Bean
standard, a standard getter that reads a value from the field:
ObservableValue.value and it returns the value as a native
datatype (e.g. int). In ObservableValue 213, setValue() is,
according to Java Bean standard, a standard setter that writes
a value to the field: ObservableValue.value. In Observabl-
eValue 213, addListener() enables listeners to listen to
changes of the distinct values. The method valueChange() in
ValueListener 217 is used by the ObservableValue 213 to
inform one or more listeners that a specific internal (native)
value has changed.

FIG. 3 is a flowchart illustrating operational steps of updat-
ing observable values for multiple user-interface compo-
nents, in accordance with an exemplary embodiment of the
present invention. The operating steps are implemented by
value update program 110 shown in FIG. 1. At step 301, in
response to receiving a request from multiple UI components
130, value update program 110 reads values from an internal
cache based on keys. Each of the values from the internal
cache is indexed by an arbitrary key. This step is done by
getObservableValue() in ObservableUpdater 211 shown in
FIG. 2. The internal cache is first loaded when Observable-
Updater 211 is requested to load data for some keys. In the
next steps, the internal cache is updated whenever more data
is loaded or when existing data is changed. At step 303, value
update program 110 reads values from persistent storage 120
(shown in FIG. 1) based on the same keys. This is done by
load() in ObservableUpdater 211 shown in FIG. 2.

Atstep 305, value update program 110 compares the values
from the persistent storage 120 and the values from the inter-
nal cache. At decision block 307, value update program 110
determines whether a matched key is found in the internal
cache. In response to determining that the matched key is not
found in the internal cache (NO branch of decision block
307), value update program 110, at step 311, write a respec-
tive one of the values from the persistent storage to the inter-
nal cache. At this step, value update program 110 wraps the
value whose key is not found in the internal cache and adds it
into the internal cache. Because no listeners have been regis-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

tered for the value whose key is not found in the internal
cache, value update program 110 does not fire any event.

In response to determining that the matched key is found in
the internal cache (YES branch of decision block 307), value
update program 110, at step 309, checks a respective one of
the values from the internal cache. At decision block 313,
value update program 110 determines whether the respective
one of the values in the internal cache has been changed. In
response to determining that the respective one of the values
in the internal cache has been changed (YES branch of deci-
sion block 313), at step 315, value update program 110 writes
the respective one of the values from persistent storage 120 to
the internal cache. In this exemplary embodiment, this is done
by setValue() in ObservableValue 213 of value update pro-
gram 110.

Value update program 110, at step 317, notifies one or more
listeners of the respective one of the values in the internal
cache that a change is made. Here, value update program 110
gives interested parties (e.g. grids showing the cached values)
an option to act on the changes of individual values (typically
to update the Ul component).

After step 311, step 317, or in response to determining that
the respective one of the values in the internal cache has not
been changed (NO branch of decision block 313), value
update program 110, at decision block 319, determines
whether value update program 110 has written all values from
persistent storage 120 to the internal cache.

In response to determining that value update program 110
has not written all values from persistent storage 120 to the
internal cache (NO branch of decision block 319), value
update program 110 goes back to step 305.

In response to determining that value update program 110
has written all values from persistent storage 120 to the inter-
nal cache (YES branch of decision block 319), value update
program 110 notifies, at step 321, all listeners that read and
writing operations have finished. Here, value update program
110 gives interested parties (e.g. grids showing the cached
values) an option to act on the read/write events and fetch all
interesting values (e.g. the cached values shown in grids) in
one call when ObservableUpdater 211 has made changes of
the values. Thus, multiple Ul components 130 that have
requested the values register themselves as listeners for the
values in the internal cache.

FIG. 4 is a diagram of components of a computer device
hosting value update program 110 shown in FIGS. 1 and 2, in
accordance with an exemplary embodiment of the present
invention. It should be appreciated that FIG. 4 provides only
an illustration of one implementation and does not imply any
limitations with regard to the environment in which different
embodiments may be implemented.

Referring to FIG. 4, the computer device includes commu-
nications fabric 400 which provides communications among
processor(s) 420, memory 410, tangible storage device(s)
430, network interface(s) 440, and I/O (input/output) inter-
face(s) 450. Memory 410 includes ROM(s) (Read Only
Memory) 411 and RAM(s) (Random Access Memory) 413.

One or more operating system(s) 431 and one or more
computer program(s) 433 reside on one or more computer-
readable tangible storage device(s) 430. In the exemplary
embodiment, value update program 110 shown in FIG. 1
resides on one or more computer-readable tangible storage
device(s) 430 of the computer device, and in RAM(s) 413. In
the exemplary embodiment, persistent storage 120 shown in
FIG. 1 is computer-readable tangible storage device(s) 430 of
the computer device.

US 9,052,793 B2

7

The computer device further includes I/O interface(s) 450.
1/0 interface(s) 450 allow for input and output of data with
external device(s) 460 that may be connected to the computer
device. The computer device further includes network inter-
face(s) 440 for communications between the computer device
and a computer network.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

What is claimed is:

1. A method for updating observable values for multiple
user-interface components, the method implemented by a
computer system, the method comprising:

reading first values from a cache, in response to receiving a

request from the user-interface components, the first
values indexed by keys;

reading second values from persistent storage, the second

values indexed by the keys;

comparing the first values and the second values based on

the keys;

writing to the cache the second values as new values of the

first values;

notifying one or more observers for respective ones of the

first values, wherein the respective ones of the first val-
ues are changed; and

notifying the one or more observers for the first values that

reading and writing operations are finished.

2. The method of claim 1, wherein the computer system
comprises a computer program comprising a first class for
updating the first values in the cache, a second class each
instance thereof wrapping one of the first values, a first
observer interface of the first class, and a second observer
interface of the second class.

3. The method of claim 2, wherein the first class and the
second class have a composition relationship, the first class
associates with multiple instances of the second class,
wherein the first class, through the first observer interface,
notifies the one or more observers for the first values, and
wherein the second class, through the second observer inter-
face, notifies the one or more observers for the respective ones
of the first values.

4. The method of claim 1, further comprising:

writing to the cache the second values as the first values in

the cache, in response to determining that the first values
are not present in the cache.

5. The method of claim 1, further comprising:

registering the one or more observers, in response to that

read and write operations are finished.

10

—

5

20

25

30

40

45

50

55

60

65

8

6. The method of claim 1, further comprising:

removing one or more observers for a respective one of the
first values, in response to that the one or more observers
for a respective one of the first values request to be
removed; and

removing the respective one of the first values from the

cache when a last one of the one or more observers is
removed.

7. The method of claim 1, further comprising:

grouping one or more observers for a respective one of the

first values, wherein the one or more observers for the
respective one of the first values are in a group with an
identifier.

8. A computer program product for updating observable
values for multiple user-interface components, the computer
program product comprising:

one or more computer-readable tangible storage devices

and program instructions stored on at least one of the one
or more computer-readable tangible storage devices, the
program instructions comprising:

program instructions to read first values from a cache, in

response to receiving a request from the user-interface
components, the first values indexed by keys;

program instructions to read second values from persistent

storage, the second values indexed by the keys;
program instructions to compare the first values and the
second values based on the keys;

program instructions to write to the cache the second val-

ues as new values of the first values;

program instructions to notify one or more observers for

respective ones of the first values, wherein the respective
ones of the first values are changed; and

program instructions to notify the one or more observers

for the first values that reading and writing operations
are finished.

9. The computer program product of claim 8, wherein the
computer system comprises a computer program comprising
a first class for updating the first values in the cache, a second
class each instance thereof wrapping one of the first values, a
first observer interface of the first class, and a second observer
interface of the second class.

10. The computer program product of claim 9, wherein the
first class and the second class have a composition relation-
ship, the first class associates with multiple instances of the
second class, wherein the first class, through the first observer
interface, notifies the observers for the first values, and
wherein the second class, through the second observer inter-
face, notifies the one or more observers for the respective ones
of the first values.

11. The computer program product of claim 8, further
comprising:

program instructions to write to the cache the second val-

ues as the first values in the cache, in response to deter-
mining that the first values are not present in the cache.

12. The computer program product of claim 8, further
comprising:

program instructions to register the observers, in response

to that read and write operations are finished.

13. The computer program product of claim 8, further
comprising:

program instructions to remove one or more observers for

arespective one of the first values, in response to that the
one or more observers for a respective one of the first
values request to be removed; and

program instructions to remove the respective one of the

first values from the cache when a last one of the one or
more observers is removed.

US 9,052,793 B2

9

14. The computer program product of claim 8, further
comprising:

program instructions to group one or more observers for a

respective one of the first values, wherein the one or
more observers for the respective one of the first values
are in a group with an identifier.

15. A computer system for updating observable values for
multiple user-interface components, the computer system
comprising:

one or more processors, one or more computer-readable

tangible storage devices, and program instructions
stored on at least one of the one or more computer-
readable tangible storage devices for execution by at
least one of the one or more processors, the program
instructions comprising:

program instructions to read first values from a cache, in

response to receiving a request from the user-interface
components, the first values indexed by keys;

program instructions to read second values from persistent

storage, the second values indexed by the keys;
program instructions to compare the first values and the
second values based on the keys;

program instructions to write to the cache the second val-

ues as new values of the first values;

program instructions to notify one or more observers for

respective ones of the first values, wherein the respective
ones of the first values are changed; and

program instructions to notify the one or more observers

for the first values that reading and writing operations
are finished.

16. The computer system of claim 15, wherein the com-
puter system comprises a computer program comprising a

5

10

20

25

30

10

first class for updating the first values in the cache, a second
class each instance thereof wrapping one of the first values, a
first observer interface of the first class, and a second observer
interface of the second class, wherein the first class and the
second class have a composition relationship, the first class
associates with multiple instances of the second class,
wherein the first class, through the first observer interface,
notifies the one or more observers for the first values, and
wherein the second class, through the second observer inter-
face, notifies the one or more observers for the respective ones
of the first values.
17. The computer system of claim 15, further comprising:
program instructions to write to the cache the second val-
ues as the first values in the cache, in response to deter-
mining that the first values are not present in the cache.
18. The computer system of claim 15, further comprising:
program instructions to register the one or more observers,
in response to that read and write operations are finished.
19. The computer system of claim 15, further comprising:
program instructions to remove one or more observers for
arespective one of the first values, in response to that the
one or more observers for a respective one of the first
values request to be removed; and
program instructions to remove the respective one of the
first values from the cache when a last one of the one or
more observers is removed.
20. The computer system of claim 15, further comprising:
program instructions to group one or more observers for a
respective one of the first values, wherein the one or
more observers for the respective one of the first values
are in a group with an identifier.

#* #* #* #* #*

